

How Organizational Structure can Foster Equity: Lessons from the Life Sciences

Laurel Smith-Doerr

UMassAmherst | ADVANCE Program

How does the structure of a STEM company impact how well it does in achieving equitable opportunity for its staff and management?

- Universities and most modern companies are bureaucracies (Weber 1922)
 - Structures of hierarchical authority and resource distribution, formal policies

Research Context: Life sciences

- US life scientists: since 1990s about half of PhDs are women
- Research-intensive workplaces: universities, large pharmaceutical companies, biotech start-ups, government science agencies
- National sample based on NIGMS records

Network Organizations v. Hierarchies

Network Organizations:

Indefinite and sequential interaction structure, <u>norms</u> govern relations, partners pool resources, expectations foster <u>collaboration</u> but are not rule bound, flows of non-redundant "freer" info (Powell 1990).

Life sciences example: **biotechnology** firms dedicated to human therapeutics

Question for women in science—do old boy networks flourish in the absence of rules? • Hierarchies:

Employment in formal authority structure patterns interaction, <u>rules</u> govern relations, resources (including info) distributed according to <u>rank</u>, mass production of reliable products of a given quality.

Life sciences examples: multinational pharmaceutical corporations, universities

Question for women in science does bureaucratic procedure combat discrimination, or hide biased informal organization?

Data sources

- US life scientists' holding leadership roles in different organizational settings by gender: Smith-Doerr (2004).
- USPTO patenting by organizational setting and gender: Whittington and Smith-Doerr (2008).
- Massachusetts biotechnology firm founders by gender and immigrant status: Monti, Smith-Doerr and McQuaid (2010).

Likelihood of scientists moving into supervisory positions, Network v. Hierarchical settings

	Change in Odds of Supervising in Network firms	Change in Odds of Supervising in Hierarchies
Men	No difference	No difference
Women	7.9 times more likely	60% decrease in odds

UMassAmherst ADVANCE Program

Figure 1: Predicted Probabilities of Patenting, by Sex and Sector NOTE: Numbers in boxes refer to the difference in probabilities between men and women (M-F) and the F/M predicted probability ratio (multiplied by 100).

Note: All other variables are held at mean. Source: Whittington and Smith-Doerr (2008). N=961.

Why greater equity in biotech firms?

Clues from interviews (Smith-Doerr 2004, N=47).

1. Flexibility in collaboration

 About a woman scientist friend: "left a tenured position at [an elite university] to go to [a biotechnology firm]...said the university department under [Chairman] was an autocracy...could do science there [at firm]—working with who they wanted to rather than dealing with [Chairman]."

2. Transparency

"From my experience at [academic setting] I could tell you many a true story about political infighting...[at biotech firm] we are not compartmentalized—and get to work with many good scientists both here and outside the firm. And we choose who to work with based on non-financial considerations, like how good they are in their field."

• 3. Collective rewards

"While I was on maternity leave here [biotech firm] I could keep in touch with my colleagues who kept it moving forward...when I was a postdoc at [prestigious academic institute], people collaborated somewhat, on the fringes of their work, but still had their main turf which they guarded carefully."

A Comparison of US data to Massachusetts and New England biotech founders

US data from CPST (2002); MA data from Monti, Smith-Doerr & McQuaid (2007)

Can lessons from biotech network organizations translate to larger organizations... even bureaucracies?

 Kalev (2009): Cracking the glass cages
 In large for-profit business organizations, found greater equity for women and people of color in less hierarchical, cross-functional collaborative teams

UMass ADVANCE: Collaboration and Equity

- Focus on collaboration in: inclusive communities, research, and shared decision-making
- R³ Model—resources, relationships, and recognition

Building Relationships for collaboration: Faculty Mentoring for Equity at UMass Amherst

Research literature and existing knowledge: mutual mentoring

- O UMass ADVANCE research identifies gender gap in mentoring, including for research collaboration (Misra et al. 2017)
- Programs with <u>Resources</u> (Mutual mentoring grants), <u>Relationships</u> (Peer Mentoring Workshop), and <u>Recognition</u> (ADVANCE College Mentoring Awards)
 - Working with Provost's office on faculty mentoring plans for all new hires

Key take-away points

 Organizational structures that are less hierarchical and more collaborative not only foster gender and race equity, but also innovation and productivity

- Organizational characteristics that foster equity:
 - Giving women and BIPOC workers *flexibility* and autonomy in project collaborations
 - Providing *transparency* in resource distribution decisions, and in allocating credit
 - Establishing *collective rewards* for groups, teams and units rather than just individuals

Dependent variable—leadership role in life sciences

Academic Position	Industry Position	Supervisory Level
Student in another discipline, RA		0
A .	Assistant, technician	0
Postdoctoral fellow		0
	Scientist	0
	Team director	1
Assistant professor		1
Associate professor		1
-	Department/section head	1
Full professor	-	1
-	Upper research administration	1
Dean/administration		1
	Board of directors, CEO	1

 TABLE 2

 PhD Positions and Supervisory Level

Source: Smith-Doerr (2004, Soc Perspectives)