Photo of a black hole
At the center of a black hole density and gravity are infinite and the rules of physics and space-time cease to exist.
February 9, 2016

Supercomputing offers peek inside a rotating black hole

By: 

  • Dartmouth
Researchers at UMass Dartmouth, Georgia Gwinnett College, and University of Maryland develop first-ever computer simulation of the interior of a rotating black hole.

Black holes have captured much attention not just in science but also in popular media. The 2014 movie Interstellar portrays a fast-rotating supermassive black hole, into which the protagonist falls in order to probe its center. New research suggests that may not just be the stuff of Hollywood magic.

At the center of a black hole density and gravity are infinite and the rules of physics and space-time cease to exist. This gravitational phenomenon has driven scientists to push the boundaries of what we know about black holes, gradually shrinking the unknowns. This research is aided by the use of computer simulations powered by supercomputing. Thanks to researchers from UMass Dartmouth, Georgia Gwinnett College, and University of Maryland, a first-of-its-kind simulation offers a peek into the inside of a rotating black hole.

UMass Dartmouth Physics Associate Professor Gaurav Khanna and University of Maryland Postdoctoral Researcher Anil Zenginoglu, led by Georgia Gwinnett College Physics Associate Professor Lior Burko, have published a Rapid Communication in Physical Review Da peer-reviewed publication of the American Physical Society, on a computer simulation of the interior of a rotating black hole, which accounts for the complicated rotational properties.

"This has never been done before, although there has been lots of speculation for decades on what actually happens inside a black hole."

- Dr. Gaurav Khanna 

“This has never been done before, although there has been lots of speculation for decades on what actually happens inside a black hole,” Dr. Khanna said. “The problem is very challenging — requiring development of many new mathematical and computational techniques. I expect this to be a new additional area of focus for my research program over the next several years.”

“Non-rotating black holes have been studied in computer simulations for decades,” Dr. Burko said. “We developed a first-of-its-kind computer simulation of how physical fields evolve on the approach to the center of a rotating black hole. It has often been assumed that objects approaching a black hole are crushed by the increasing gravity. However, we found that while gravitational forces increase and become infinite, they do so fast enough that their interaction allows physical objects to stay intact as they move toward the center of the black hole.”

The simulation, therefore according to the research team, is consistent with a popular sci-fi scenario in which black holes are used as portals for hyperspace travel.

Drs. Khanna, Burko, and Zenginoglu made it possible for the first time to see how physical fields react on the approach to the center of the black hole. The complexity of the simulation led the scientists to adopt a model that that will allow future researchers to make progress on the definitive features of black holes.

This research was supported by the National Science Foundation.

The novel supercomputing resources of UMass Dartmouth’s Center for Scientific Computing & Visualization Research (CSCVR) were key to the success of this research project. The CSCVR promotes the mission of UMass Dartmouth by providing undergraduate and graduate students with high quality discovery-based educational experiences that transcend the traditional boundaries of academic field or department, and foster collaborative research in the computational sciences within the university and with researchers at other universities, national labs, and industry. Dr. Khanna serves as the associate director of the CSCVR.

Tags: 

Source: